

FinMile Platform API integration

Authorization

The authorization is with a username and secretapikey that needs to be sent on the headers
(this will be received separately).

All the API calls available in this documentation are using the same authorization strategy.

1.​Creating orders

API ENDPOINT:
https://api.staging.findelivers.com/shipper-integration/v2/orders

METHOD: POST

Fields descriptions:

●​ shipperOrderId (string)
○​ This should be your internal order id and needs to be unique. This value will be

used after that to get the tracking information, cancel the order, etc.
●​ Instructions (string)

○​ The delivery instruction that would be visible internally for riders
●​ Address (string)

○​ The address of delivery. We will match the postcode with this address and if our
system will not geolocate them correctly, we will insert the order with a
BLOCKED status. After that the Finmile team will verify this manually.

●​ firstName (string)
○​ The recipient first name

●​ lastName (string)
○​ The recipient last name

●​ email (string)
○​ The recipient email. This email would be used for sending recipient email if is

configured
●​ expectedStartDate (example: 2025-07-18T08:00:00)

https://api.staging.findelivers.com/shipper-integration/orders

●​
○​ Timestamp with the date and hour from when the order can be delivered. It

should not be in the past.​
The date should be equal with expectedEndDate, only the hours can be different.

●​ expectedEndDate (example: 2025-07-18T20:00:00)
○​ Timestamp with the date and hour until when the order can be delivered. It

should not be in the past
○​ The date should be equal with expectedStartDate, only the hours can be

different.
●​ serviceTime (number)

○​ This should be a number with three possible options (24, 48, 72)
○​ The unit in hours.
○​ This means that from the expectedStartDate Finmile has 24/48/72 hours to

deliver the order.
○​ This is optional and can be set by us with a default value for every shipper.

●​ shipperPackageId (string)
○​ This is the barcode value
○​ If you send only one parcel per order, that is the most used case, then this field

should have the same value as shipperOrderId
○​ This value would be used internally for scanning and it would be visible on the

labels
○​ If you send multiple parcels per order, then shipperPackageId should be

unique for every package
○​ At request, you can skip this entirely and we can default for you the value

to be the same as shipperOrderId
●​ Weight.value (number)

○​ The weight of the package
●​ Weight.unit (string)

○​ The unit of the value (kg, g, lb)
○​ kg = KILOGRAM
○​ g = GRAM
○​ lb = POUND

●​ inspectOrder (boolean)

○​ Let the driver know that the end recipient can inspect the order
●​ paidPackage (boolean)

○​ If the package was paid or not
●​ collectionAddress.collectionLine1 (string, max 255 characters)

○​ Warehouse partner or sellers warehouses address
●​ collectionAddress.postCode (string, max 255 characters)

○​ Warehouse Postcode information
●​ collectionAddress.city (string, max 255 characters)

○​ Warehouse city information

●​ collectionAddress.county (string, max 255 characters)
○​ Warehouse county information

●​ collectionAddress.name (string, max 255 characters)
○​ Warehouse person name information

●​ collectionAddress.email (string, max 255 characters)
○​ Warehouse person email information

●​ collectionAddress.phoneNumber (string, max 255 characters)
○​ Warehouse person phone number information

Error codes:

●​ If you try to insert an order with the same shipperOrderId inserted before,
you will receive an error

○​ "fieldErrors": [],

○​ "error": "BAD_REQUEST",

○​ "statusCode": 400

○​ "message": "Order with shipper order ID {{shipperOrderId}} already exists"

●​ For any other field that is mandatory and is not sent or has a wrong format
you will receive this format (example of not sending the address which is
mandatory)

○​ {

○​ "fieldErrors": [

○​ {

○​ "code": "FIELD_REQUIRED",

○​ "fieldName": "dropOff.location.address"

○​ }

○​],

○​ "error": "BAD_REQUEST",

○​ "statusCode": 400

○​ }

○​

Request payload example:

{

 "shipperOrderId": "your-order-id", (required/unique),

 "inspectOrder”: true/false,

 "paidPackage: true/false,

 "dropOff": { (required)

 "location": {

 "instructions": "Deliver in front of the red door",

 "address": "35 Main St, Midleton,P25 KP83, Ireland", (required)

​ "postCode": "352131", (required)

 "city": "London",

 "county": "Greater London",

 },

 "recipient": {

 "firstName": "John",

 "lastName": "Doe",

 "email": "jd@example.com",

 "telephone": "+010005483152"

 },

 "serviceTime": 24 (possible values: 24 / 48 / 72 (hours)

 "expectedStartDate": "2023-05-26T11:40" (required),

 "expectedEndDate": "2023-05-26T17:40" (required)

 },

 "collectionAddress":{

 "addressLine1":"the collection address",

​ "postCode":"the postcode address",

 "city":"the city address",

 "county":"the county address",

 "name":"person name information",

 "email":"person email information",

 "telephone":"person phone information",

 }

 "packages": [(required)

 {

 "shipperPackageId": "barcode value", (required/unique),

 "weight": {

 "value": 1.2,

 "unit" "g" (can be either g/kg/lb)

 },

 "price": 10

 }

]

 }

expectedStartDate and expectedEndDate should have the same date, only the hours
should be different.

Response example:

{
 "dropOffDepot": "string,

 "dropOffTrackingPageUrl": "string,

 "dropOffSystemOrderId": "string,

 "dropOffShipperOrderId": "string,

 "dropOffStatus": "string,

 "dropOffPackageIds": [

 "shipperPackageId": "string,

 "systemPackageId": "string,

],

}

2.​ GET LABELS

To get the label, you can use the following API:

API ENDPOINT:
https://api.staging.findelivers.com/shipper-integration/v2/labels/{shipperOrderCode}?typ
e=PDF&size=A4

METHOD: GET

Query params possible values:

●​ Type
○​ PDF
○​ ZPL

●​ Size
○​ A4
○​ A6

By default we return a PDF type with A4 dimensions

https://api.staging.findelivers.com/shipper-integration/labels/%7BshipperOrderCode%7D?type=PDF&size=A4
https://api.staging.findelivers.com/shipper-integration/labels/%7BshipperOrderCode%7D?type=PDF&size=A4

3.​Order History

To get a history of events of an order, use the following endpoint:

API ENDPOINT:
https://api.staging.findelivers.com/shipper-integration/v2/orders/{shipperOrderId}/history

METHOD: GET

The events returned can be configured for each shipper, based on what is chosen from
the following list:

●​ ORDER_CREATED

○​ The initial status of the order, it means that it was

successfully created in our system and it would be delivered

●​ ORDER_BLOCKED

○​ The order was successfully created in our system, but is blocked

due the geolocation we have, most probably the postal code does

not match exactly with the address, and the finmile team will fix

this manually. The order will be delivered

●​ ORDER_UPDATED

○​ This means that the order was updated, for example the delivery

date or other fields

●​ DEPO_FIRST_SCAN (A-SCAN)

○​ This is the first scan that take place in the depot. Finmile

received the order at the depot

●​ DEPO_SCAN

○​ Any scan that has happened in the depo after the first scan

●​ ORDER_ASSIGNED

○​ The order was assigned to a route and it will be delivered

●​ ORDER_IN_TRANSIT

○​ The order is in transit and it will be delivered on the current

date

●​ CLOSE_TO_DESTINATION

○​ The order is very close to the final destination (usually between

5-15 minutes)

●​ ORDER_CANCELLED

○​ The order was canceled and it would not be delivered anymore

●​ ROUTE_CANCELLED

○​ The whole route was canceled because of some problems and the

remaining orders will be delivered in the next working day

●​ ORDER_DELIVERED

○​ The order was successfully delivered

●​ ORDER_FAILED

○​ The order failed for a specific reason. Based on the number of

attempts left, Finmile will try to deliver the order again in the

next working day

●​ ORDER_RETURNED_TO_SENDER

○​ The order is returned to the sender and it would not be delivered

anymore

Response example (just an example of how the response will look like):

shipperOrderId is the tracking number

{

 "shipperOrderId": "your_order_id",

 "orderHistory": [

 {

 "eventName": "ORDER_CREATED",

 "description": "order successfully registered in the system",

 "orderType": "DROP-OFF",

 "timestamp": "2024-02-06T12:50:28.891Z",

 },

 {

 "eventName": "ORDER_BLOCKED",

 "description": "order successfully registered in the system, but

momentarily blocked",

 "orderType": "DROP-OFF",

 "timestamp": "2024-02-06T12:50:28.926Z",

 "reason": "BAD_GEOLOCATION",

 },

 {

 "eventName": "ORDER_ASSIGNED",

 "description": "order has been assigned to a route",

 "orderType": "DROP-OFF",

 "timestamp": "2024-02-06T13:22:23.312Z",

 },

 {

 "eventName": "ORDER_IN_TRANSIT",

 "description": "order sent out for delivery on event date",

 "orderType": "DROP-OFF",

 "timestamp": "2024-02-07T11:02:05.858Z",

 },

 {

 "eventName": "CLOSE_TO_DESTINATION",

 "description": "order is close to destination, usually within 15 minutes",

 "orderType": "DROP-OFF",

 "timestamp": "2024-02-07T13:46:42.537Z",

 },

 {

 "eventName": "ORDER_DELIVERED",

 "description": "order has been successfully delivered",

 "orderType": "DROP-OFF",

 "timestamp": "2024-02-07T13:55:25.542Z",

 "signatureURL": "signature_url",

 "signerName": "signer_name",

 "podURL": [

 "pod_url1",

 "pod_url2"

],

 "location": {

 "lat": "deliveryLat",

 "lng": "deliveryLng"

 },

 "notes": "notes_for_recipient",

 }

]

}

A history object contains the eventName, orderType, description and timestamp(UTC)

●​ The following events will also contain a field called reason:

eventName reason
ORDER_BLOCKED BAD_GEOLOCATION

 PACKAGE_LOST

 PACKAGE_DAMAGED

ORDER_CANCELLED REQUEST_FROM_SHIPPER
OTHER

ORDER_FAILED RECIPIENT_NOT_AVAILABLE
BUSINESS_CLOSED

ADDRESS_NOT_FOUND

REFUSED_BY_RECIPIENT

FORCE_MAJEURE

ARRIVED_AT_WRONG_ADDRESS

PACKAGE_NOT_FOUND_IN_VEHICLE

ROUTE_CANCELLED

 PACKAGE_LOST

 PACKAGE_DAMAGED

●​ ORDER_DELIVERED event will have a field called podURL containing an array for
strings representing urls to proof of delivery photos.

●​ For PICK-UP-DROP-OFF orders, the history will contain an additional field called
orderType with the value PICK-UP for the pickUp order and DROP-OFF for the
dropOff order

On the ORDER_DELIVERED eventType, there are additional fields:

●​ signatureURL - url to image of recipient signature
●​ signerName - name of signer
●​ podURL - array of URLs to proof of delivery photos
●​ location - includes lat - delivery latitude, and lng - delivery longitude
●​ notes - notes for recipient from the rider/driver

4.​Cancel Order

To cancel an order, you can use the following API:

API ENDPOINT:
https://api.staging.findelivers.com/shipper-integration/v2/orders/{shipperOrderCode}/can
cel

METHOD: PATCH

The label cannot be canceled if the status of the order is (DELIVERED, CANCELED or
RETURNED TO SENDER)

5.​Webhooks

The finmile system can trigger API calls to third parties, by receiving the API call through
communication.
By default we attach no headers and a default format of data.​
​

Default webhook fields:

●​ shipperOrderId
○​ The order code sent when you create the order

●​ eventType
○​ (ORDER_CREATED, ORDER_DELIVERED, etc) all events defined in Order

history section
●​ timestamp

○​ The timestamp when event happened in UTC

●​ generatedOrderId
○​ The order id created in our system

●​ reason
○​ The reason why an order was failed

●​ deliveryAttemptCount
○​ The number of attempts to delivered the order

The shipper can choose when the API call should be triggered, based on events. At the same
time, if the default payload(above fields) are not enough, we can customize the payload for
every shipper.
We can also customize the headers, in order to have more security and trigger the API call with
specific data to be verified.

6.​Unsuspend order

By default, when an order is inserted in our system, we can “suspend” it, until it is scanned by
the shipper in the depot. This will “un-suspend” the order and we will know for sure that the
package will be received physically in the depot.

METHOD: POST

API CALL:
https://api.staging.findelivers.com/shipper-integration/orders/{{shipperOrderId}}/unsu
spend

The authorization is the same as the other API calls, with the username and
secretapikey.

No data needs to be sent via body, just trigger the API call.

https://api.staging.findelivers.com/shipper-integration/orders/%7B%7BshipperOrderId%7D%7D/unsuspend
https://api.staging.findelivers.com/shipper-integration/orders/%7B%7BshipperOrderId%7D%7D/unsuspend

	1.​Creating orders
	2.​ GET LABELS
	3.​Order History
	4.​Cancel Order
	5.​Webhooks
	6.​Unsuspend order

